3D Printing
News Videos Newsletter Contact us
Home / Aerospace / Interview with Adam Jakus About Printing Extraterrestrial Terrain
Join our mailing list

Our newsletter is free & you can unsubscribe any time.

Interview with Adam Jakus About Printing Extraterrestrial Terrain

April 19, 2017

Yesterday, we posted about Northwestern University‘s work with various extraterrestrial regolith soil simulants. We decided to get in touch with the team behind the project for a follow-up on the state of this research and clarifications about certain elements of the methodology.

Our interviewee, Adam Jakus, has a Ph.D. in Materials Science and Engineering and is an expert on advanced material functional inks, ceramics, polymers and composites. We were able to contact Adam, as he is one of the lead researchers on the project, and he was kind enough to answer our questions.

Related Story
Scientists Develop Means for 3D Printing Extraterrestrial Materials

1) What types of printers are you using for processing the lunar soil and martian soil simulants? and how does the process differ from standard 3D painting?

[For] this work we used an EnvisionTEC 3D-BioPlotter to 3D-print (simple extrusion) the Lunar and Martian inks. However, the Lunar and Martian inks we developed could be 3D-printed on any extrusion-based 3D-printer. Our laboratory focuses on developing new materials for 3D-printing, and as such, there is nothing particularly special or unique about the 3D-printer (hardware) used.

It’s all about the materials design. Our laboratory invented the “3D-painting” process and approach, and thus, there technically is no standard 3D-painting. We have demonstrated the ability to use this process to create a very extensive variety of 3D-printable inks including metals and alloys, graphene (3D-Graphene) and carbon nanotubes, ceramics, biomaterials (Hyperelastic “Bone”), etc. (these new materials were previously reported on the in the media extensively). Thus, on one extrusion-based 3D-printer, many types of materials can be very quickly 3D-printed.

EnvisionTec 3D Bioplotter Mars Lunar Simulant soil

2) Are the printers using their stock parts as developed by a manufacturer on request or has your team modified them personally. If yes, then how so?

There is nothing special about the 3D-printer itself used in this work, and no modifications were made. It is a commercially available 3D-Bioplotter, but the inks could be used with any extrusion-based 3D-printer. The Lunar and Martian inks are an extension of the 3D-paintable materials we have previously developed and described.

3) I read that the simulants were made with a combination of commercially available materials. How did your team develop them (methodology, equipment) and in what ways do these materials differ from actual martian and lunar soil?

The Martian and Lunar Regolith simulant powders were commercially available, as are all the other components of the inks. We created the Lunar and Martian inks using our 3D-paint approach.

The simulants are the same the same simulant powders used by NASA and space researchers, and were developed specifically for extraterrestrial research. They are quite close in both composition and particle size/shape to those found on Mars and the Moon. The Martian regolith is rough, but rounded, due to weathering (Mars has an atmosphere and wind). The Lunar regolith is sharp and jagged (no weathering, and was produced by meteor and asteroid impacts). The simulants simulate these powders quite well.

4) What other hurdles are necessary before the technology is space-flight ready?

It is primarily dependent on the 3D-printing hardware, and for manufacturers to create additional space-flight ready extrusion based 3D printers (similar to the one already on the international Space Station).

A special thanks to Adam Jakus for answering all our questions. The research manuscript is available here.

Adam Jakus, PhD
Hartwell Postdoctoral Fellow Northwestern University | Ph.D. Materials Science and Engineering
Georgia Institute of Technology | B.S. and M.S. Materials Science and Engineering
Research Interests: Engineering and 3D-printing new metal, ceramic, polymer, composite, and advanced material functional inks. Developing new multi-material printing techniques. Design and implementation of 3D-printing enabled materials and devices for medical, structural, and energy applications.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Latest posts

3D Printed Telescopes Making Astronomy Affordable

Brian Miche is on a quest to democratize stargazing experiences globally, and 3D printing is key to its success. In the late 1970s,... read more »

News
3D Printed Telescopes Making Astronomy Affordable

Pix Robobus: Transforming Urban Mobility With 3D Printing

Pix Moving has developed the Pix Robobus, an electric vehicle geared towards smart urban mobility. Its modular and customizable design goes beyond traditional... read more »

Automotive
Pix Moving

Researchers 3D Print Smart Skin Sensors

University of Glasgow researchers have made advancements in temperature sensing with the development of innovative 'smart skin' sensors. This breakthrough involves a soft,... read more »

News
Researchers 3D Print Smart Skin Sensors

3D Printed Innovation Merges with Traditional Korean Furniture

Kim Min Hyuk's Saero series redefines traditional Korean furniture, seamlessly blending cultural heritage with modern design principles. Departing from conventional norms, Saero transcends... read more »

News
3D Printed Innovation Merges with Traditional Korean Furniture

MouthPad Unveils Tongue-Operated Touchpad at CES 2024

The MouthPad has made its debut at CES 2024 in Las Vegas, showcasing a unique tongue-operated touchpad capable of turning your tongue into... read more »

Electronics
MouthPad Unveils Tongue-Operated Touchpad at CES 2024

3D Printed Monolithic Detector Achieves Milestone at CERN

The 3DET (3D printed detector) collaboration at CERN, in partnership with ETH Zurich, the School of Management and Engineering Vaud, and the Institute... read more »

News
3D Printed Monolithic Detector Achieves Milestone at CERN

CoreTechnologie AM Software Gets Major Lattice Update

CoreTechnologie GmbH, based in Mömbris, Germany, has unveiled the 1.5 update to its 4D_Additive Manufacturing software. This update has brought notable revisions to... read more »

News
CoreTechnologie AM Software Gets Major Lattice Update

Vivobarefoot Unveils 3D Printed Compostable Sneakers

Shoe brand Vivobarefoot, in collaboration with material science company Balena, has revealed a prototype at the Biofabricate conference — a 3D printed compostable... read more »

Fashion
Vivobarefoot Unveils 3D Printed Compostable Sneakers

UQ Researchers Employ 4D Printing for Soft Robotics

Researchers from the University of Queensland have showcased a novel 4D printing technology, potentially ushering in a new era for soft robotics. Their... read more »

News
UQ Researchers Employ 4D Printing for Soft Robotics

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
  • Modix BIG-60 Modix BIG-60
    600 x 600 x 660 mm
    from $4,900
    Request a Quote
  • Modix BIG Meter Modix BIG Meter
    980 x 1000 x 1000 mm
    from $13,500
    Request a Quote
  • Modix BIG-180X Modix BIG-180X
    1800 x 600 x 600 mm
    from $15,500
    Request a Quote
  • Modix BIG-120X Modix BIG-120X
    1200 x 600 x 660 mm
    from $7,500
    Request a Quote
  • Modix BIG-120Z Modix BIG-120Z
    600 x 600 x 1200 mm
    from $7,500
    Request a Quote
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Bambu Lab X1 Carbon AMS Combo

    • - Print size: 256 x 256 x 256 mm
    • - fully enclosed
    More details »
    $1,499.00 MatterHackers
    Buy Now
  • Creality K1

    • - Print size: 220 x 220 x 250 mm
    • - fully enclosed
    More details »
    $519.00 Amazon
    Buy Now
  • Anycubic Photon M5S

    • - Print size: 218 x 123 x 200 mm
    • - 19 micron print accuracy
    More details »
    $599.99 Amazon
    Buy Now
  • 3D Printers for Beginners

    3D Printers for Beginners

    View Post
  • Best 3D Printers – Buyers Guide

    Best 3D Printers – Buyers Guide

    View Post

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2024 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing