3D Printing
News Videos Newsletter Contact us
Home / Company / 3D Systems / The Future of AM-Assisted Sand Casting
Join our mailing list

Our newsletter is free & you can unsubscribe any time.

The Future of AM-Assisted Sand Casting

January 12, 2023

The sand casting process involves creating a mold from casting sand and filling it with liquid metal to create a solid part. It is an ancient process that has been improved in recent years due to advancements in 3D printing.

This is especially true when using a hybrid subtractive / additive approach, which 3D Systems has been discussing recently.

Read on to learn about the future of sand casting.

Hybrid Manufacturing

One of the key benefits of incorporating 3D printing into the sand casting process is that it allows for greater design flexibility. Traditional sand casting has always been good for creating complex geometry (and internal channels), which is why it has been used for manufacturing engine blocks for years.

Now thanks to AM, the final part geometry can benefit from even more complexity, and when combined with subtractive methods such as milling, the dimensional accuracy and surface finish can be greatly enhanced.

You can see the AM-assisted sand casting workflow, along with some pictures of the cast parts in the graphic below.

sand casting process
AM-assisted sand casting (Image credit: Proveedora de Servicios y Suministros Industriales )

Despite the integration of 3D printing technology, the traditional sand casting methodology remains largely unchanged.

The process still involves using a replica or pattern of the intended final part, which is then placed within a two-part mold and cores to create internal passages when needed. Specialized molding sand is still compacted within the core and around the pattern, and an in-gate, sprue and pouring basin are still required. The final step, pouring in the molten metal, remains unchanged.

What has changed is the fabrication of the pattern itself. Using AM to produce the pattern provides the ability to create more complex and intricate designs, with greater surface finish and dimensional accuracy. The pattern fabrication process is also accelerated thanks to AM, and as a result, use of a hybrid approach can significantly reduce lead time and cost associated with sand casting.

Pellet Printing

When 3D Systems acquired Colorado-based Titan Robotics last year, they gained the benefits of the large format pellet printing / hybrid CNC system that the company had on offer.

In particular, Titan Robotics has a printer named the Atlas HS, which features dual print heads for both pellet and filament extrusion, plus a CNC controlled spindle for milling, drilling, boring and threading. This allows the rapid deposition of a number of low-cost thermoplastics, plus a significantly higher quality of surface finish that can be provided by 3D printing alone.

This makes the Atlas an ideal solution for tasks such as the manufacturer of a variety of toolings, including sand casting patterns.

titan
Hybrid approach on the Titan HS. (Image credit 3D Systems / Titan Robotics)

Tips for Sand Casting with AM

Not all plastics are created equally, and 3D Systems has some guidelines on helping you to select the best plastic for your sand casting needs.

To get sand casting with a superior surface finish, it is recommended to use high-performance polymers like glass or carbon fiber-filled ABS, PC, Nylon or PEKK. They’re way more durable and can be sanded or machined much better than lower temperature polymers like PLA and PETG.

Also it is worth noting that most primers and paints stick well to high-performance polymers except for polyolefins (PP, PE).

The company also advises that using stronger polymers can result in higher throughputs, thanks to the higher wear resistance offered by such plastics. One report states that using such polymers can result in up to 30,000 cycles with almost no visible or measurable wear.

For extra value, 3D Systems recommends printing patterns in segments for certain applications.

This reduces print issue impact and produces tools in parallel over multiple printers rather than serial. It is also beneficial if there is to be excessive wearing on specific parts of the pattern. For larger patterns, a well-worn pattern section can be replaced, rather than having to print the entire pattern again.

Conclusion

As you can see, the integration of 3D printing technology into the sand casting process has brought about a multitude of benefits, including greater design flexibility, improved efficiency, cost savings, and enhanced geometric features.

If you would like to know more about the Atlas HS hybrid system from Titan Robotics, head on over to this link.

And if you would like to see the deep dive into how hybrid manufacturing can help your company with sand casting, then you can download the paper from 3D Systems right here.

Download Paper
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Latest posts

3D Printed Telescopes Making Astronomy Affordable

Brian Miche is on a quest to democratize stargazing experiences globally, and 3D printing is key to its success. In the late 1970s,... read more »

News
3D Printed Telescopes Making Astronomy Affordable

Pix Robobus: Transforming Urban Mobility With 3D Printing

Pix Moving has developed the Pix Robobus, an electric vehicle geared towards smart urban mobility. Its modular and customizable design goes beyond traditional... read more »

Automotive
Pix Moving

Researchers 3D Print Smart Skin Sensors

University of Glasgow researchers have made advancements in temperature sensing with the development of innovative 'smart skin' sensors. This breakthrough involves a soft,... read more »

News
Researchers 3D Print Smart Skin Sensors

3D Printed Innovation Merges with Traditional Korean Furniture

Kim Min Hyuk's Saero series redefines traditional Korean furniture, seamlessly blending cultural heritage with modern design principles. Departing from conventional norms, Saero transcends... read more »

News
3D Printed Innovation Merges with Traditional Korean Furniture

MouthPad Unveils Tongue-Operated Touchpad at CES 2024

The MouthPad has made its debut at CES 2024 in Las Vegas, showcasing a unique tongue-operated touchpad capable of turning your tongue into... read more »

Electronics
MouthPad Unveils Tongue-Operated Touchpad at CES 2024

3D Printed Monolithic Detector Achieves Milestone at CERN

The 3DET (3D printed detector) collaboration at CERN, in partnership with ETH Zurich, the School of Management and Engineering Vaud, and the Institute... read more »

News
3D Printed Monolithic Detector Achieves Milestone at CERN

CoreTechnologie AM Software Gets Major Lattice Update

CoreTechnologie GmbH, based in Mömbris, Germany, has unveiled the 1.5 update to its 4D_Additive Manufacturing software. This update has brought notable revisions to... read more »

News
CoreTechnologie AM Software Gets Major Lattice Update

Vivobarefoot Unveils 3D Printed Compostable Sneakers

Shoe brand Vivobarefoot, in collaboration with material science company Balena, has revealed a prototype at the Biofabricate conference — a 3D printed compostable... read more »

Fashion
Vivobarefoot Unveils 3D Printed Compostable Sneakers

UQ Researchers Employ 4D Printing for Soft Robotics

Researchers from the University of Queensland have showcased a novel 4D printing technology, potentially ushering in a new era for soft robotics. Their... read more »

News
UQ Researchers Employ 4D Printing for Soft Robotics

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
  • Modix BIG-120X Modix BIG-120X
    1200 x 600 x 660 mm
    from $7,500
    Request a Quote
  • Modix BIG-180X Modix BIG-180X
    1800 x 600 x 600 mm
    from $15,500
    Request a Quote
  • Modix BIG-120Z Modix BIG-120Z
    600 x 600 x 1200 mm
    from $7,500
    Request a Quote
  • Modix BIG-60 Modix BIG-60
    600 x 600 x 660 mm
    from $4,900
    Request a Quote
  • Modix BIG Meter Modix BIG Meter
    980 x 1000 x 1000 mm
    from $13,500
    Request a Quote
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Creality K1

    • - Print size: 220 x 220 x 250 mm
    • - fully enclosed
    More details »
    $519.00 Amazon
    Buy Now
  • Anycubic Photon M5S

    • - Print size: 218 x 123 x 200 mm
    • - 19 micron print accuracy
    More details »
    $599.99 Amazon
    Buy Now
  • Bambu Lab X1 Carbon AMS Combo

    • - Print size: 256 x 256 x 256 mm
    • - fully enclosed
    More details »
    $1,499.00 MatterHackers
    Buy Now
  • 3D Printers for Beginners

    3D Printers for Beginners

    View Post
  • Best 3D Printers – Buyers Guide

    Best 3D Printers – Buyers Guide

    View Post

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2024 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing